A probabilistic bitwise genetic algorithm for b-spline based image deformation estimation

Takumi Nakane, Xuequan Lu, Takuya Akashi, Chao Zhang

研究成果: 書籍の章/レポート/会議録会議への寄与査読

4 被引用数 (Scopus)

抄録

We propose a novel genetic algorithm to solve the image deformation estimation problem by preserving the genetic diversity. As a classical problem, there is always a trade-off between the complexity of deformation models and the difficulty of parameters search in image deformation. 2D cubic B-spline surface is a highly free-form deformation model and is able to handle complex deformations such as fluid image distortions. However, it is challenging to estimate an apposite global solution. To tackle this problem, we develop a genetic operation named probabilistic bitwise operation (PBO) to replace the crossover and mutation operations, which can preserve the diversity during generation iteration and achieve better coverage ratio of the solution space. Furthermore, a selection strategy named annealing selection is proposed to control the convergence. Qualitative and quantitative results on synthetic data show the effectiveness of our method.

本文言語英語
ホスト出版物のタイトルGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion
出版社Association for Computing Machinery, Inc
ページ300-301
ページ数2
ISBN(電子版)9781450367486
DOI
出版ステータス出版済み - 2019/07/13
イベント2019 Genetic and Evolutionary Computation Conference, GECCO 2019 - Prague, チェコ共和国
継続期間: 2019/07/132019/07/17

出版物シリーズ

名前GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion

学会

学会2019 Genetic and Evolutionary Computation Conference, GECCO 2019
国/地域チェコ共和国
CityPrague
Period2019/07/132019/07/17

ASJC Scopus 主題領域

  • 人工知能
  • 理論的コンピュータサイエンス
  • ソフトウェア

フィンガープリント

「A probabilistic bitwise genetic algorithm for b-spline based image deformation estimation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル