A Novel Spherical Search Based Grey Wolf Optimizer for Optimization Problems

Zhe Wang, Haichuan Yang, Ziqian Wang, Yuki Todo, Zheng Tang, Shangce Gao

研究成果: 書籍の章/レポート/会議録会議への寄与査読

1 被引用数 (Scopus)

抄録

Grey wolf optimizer (GWO) has shown to converge rapidly during the initial stage of a global search, but it still frequently stick into local optimal. In contrast, spherical evolution (SE) adopts a brand new spherical search style and has good abilities of local optimum avoidance. The focus of this research is on incorporating SE into GWO for optimization problems. This hybrid method generates a new generation of individuals by alternating the leadership hierarchy and hunting mechanism of GWO and the spherical search style of SE. The experiment results on CEC2017 benchmark functions indicate the effectiveness of this hybridization, suggesting that grey wolf search mechanism and spherical search style are complementary. This study gives not only more insights into both original algorithms, but also a novel construction method of merging different algorithms.

本文言語英語
ホスト出版物のタイトルProceedings of 2020 IEEE International Conference on Artificial Intelligence and Information Systems, ICAIIS 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ38-43
ページ数6
ISBN(電子版)9781728165905
DOI
出版ステータス出版済み - 2020/03
イベント2020 IEEE International Conference on Artificial Intelligence and Information Systems, ICAIIS 2020 - Dalian, 中国
継続期間: 2020/03/202020/03/22

出版物シリーズ

名前Proceedings of 2020 IEEE International Conference on Artificial Intelligence and Information Systems, ICAIIS 2020

学会

学会2020 IEEE International Conference on Artificial Intelligence and Information Systems, ICAIIS 2020
国/地域中国
CityDalian
Period2020/03/202020/03/22

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 情報システム
  • 情報システムおよび情報管理
  • 制御と最適化

フィンガープリント

「A Novel Spherical Search Based Grey Wolf Optimizer for Optimization Problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル