A novel mutual information based ant colony classifier

Hang Yu, Xiaoxiao Qian, Yang Yu, Jiujun Cheng, Ying Yu, Shangce Gao

研究成果: 書籍の章/レポート/会議録会議への寄与査読

3 被引用数 (Scopus)

抄録

By constructing a list of IF-THEN rules, the traditional ant colony optimization (ACO) has been successfully applied on data classification with not only a promising accuracy but also a user comprehensibility. However, as the collected data to be classified usually contain large volumes and redundant features, it is challenging to further improve the classification accuracy and meanwhile reduce the computational time for ACO. This paper proposes a novel hybrid mutual information based ant colony algorithm (mr2 AM+) for classification. First, a maximum relevance minimum redundancy feature selection method is used to select the most informative and discriminative attributes in a dataset. Then, we use the enhanced ACO classifier (i.e., AM+) to perform the classification. Experimental results show that the proposed mr2AM+ outperforms other seven state-of-art related classification algorithms in terms of accuracy and the size of model.

本文言語英語
ホスト出版物のタイトルProceedings of 2017 International Conference on Progress in Informatics and Computing, PIC 2017
出版社Institute of Electrical and Electronics Engineers Inc.
ページ61-65
ページ数5
ISBN(電子版)9781538619773
DOI
出版ステータス出版済み - 2017
イベント5th International Conference on Progress in Informatics and Computing, PIC 2017 - Nanjing, 中国
継続期間: 2017/12/152017/12/17

出版物シリーズ

名前Proceedings of 2017 International Conference on Progress in Informatics and Computing, PIC 2017

学会

学会5th International Conference on Progress in Informatics and Computing, PIC 2017
国/地域中国
CityNanjing
Period2017/12/152017/12/17

ASJC Scopus 主題領域

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システム
  • 信号処理

フィンガープリント

「A novel mutual information based ant colony classifier」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル