A novel median dendritic neuron model for prediction

Shi Wang, Yang Yu*, Lin Zou, Sheng Li, Hang Yu, Yuki Todo, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

15 被引用数 (Scopus)

抄録

Dendritic neuron model (DNM) that utilizes a single dendritic neuron to emulate the information processing in human brains has been successfully applied to classification, approximation, and prediction fields. However, it is still a challenging task to improve the performance for forecasting the time series with outliers. A time series is a collection of data ordered in time. An outlier in time series as an input can affect prediction performance. Thus, in this study, we first propose a novel median dendritic neuron model (MDNM) for prediction to deal with time series with outliers. In MDNM, DNM and median function are combined to achieve better forecasting results. Moreover, states of matter search (SMS) algorithm is used to train MDNM. Twenty real time series and a benchmark time series are adopted to verify the performance of MDNM. The comparison between the MDNM and DNM suggests that MDNM is effective for forecasting time series with outliers.

本文言語英語
論文番号A19241
ジャーナルIEEE Access
8
DOI
出版ステータス出版済み - 2020

ASJC Scopus 主題領域

  • コンピュータサイエンス一般
  • 材料科学一般
  • 工学一般

フィンガープリント

「A novel median dendritic neuron model for prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル