A non-oscillatory and conservative semi-Lagrangian scheme with fourth-degree polynomial interpolation for solving the Vlasov equation

Takayuki Umeda*, Yasuhiro Nariyuki, Daichi Kariya

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

33 被引用数 (Scopus)

抄録

A conservative semi-Lagrangian scheme for the numerical solution of the Vlasov equation is developed based on the fourth-degree polynomial interpolation. Then, a numerical filter is implemented that preserves positivity and non-oscillatory. The numerical results of both one-dimensional linear advection and two-dimensional Vlasov-Poisson simulations show that the numerical diffusion with the fourth-degree polynomial interpolation is suppressed more than with the cubic polynomial interpolation. It is also found that inherent conservation properties of the Vlasov equation can be improved by combining numerical fluxes of the upwind-biased and central fourth-degree polynomial interpolations.

本文言語英語
ページ(範囲)1094-1100
ページ数7
ジャーナルComputer Physics Communications
183
5
DOI
出版ステータス出版済み - 2012/05

ASJC Scopus 主題領域

  • ハードウェアとアーキテクチャ
  • 物理学および天文学一般

フィンガープリント

「A non-oscillatory and conservative semi-Lagrangian scheme with fourth-degree polynomial interpolation for solving the Vlasov equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル