A new updating procedure in the Hopfield-type network and its application to N-Queens problem

Rong Long Wang*, Zheng Tang, Qi Ping Cao

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

2 被引用数 (Scopus)

抄録

When solving combinatorial optimization problems with a binary Hopfield-type neural network, the updating process in neural network is an important step in achieving a solution. In this letter, we propose a new updating procedure in binary Hopfield-type neural network for efficiently solving combinatorial optimization problems. In the new updating procedure, once the neuron is in excitatory state, then its input potential is in positive saturation where the input potential can only be reduced but cannot be increased, and once the neuron is in inhibitory state, then its input potential is in negative saturation where the input potential can only be increased but cannot be reduced. The new updating procedure is evaluated and compared with the original procedure and other improved methods through simulations based on N-Queens problem. The results show that the new updating procedure improves the searching capability of neural networks with shorter computation time. Particularly, the simulation results show that the performance of proposed method surpasses the exiting methods for N-queens problem in synchronous parallel computation model.

本文言語英語
ページ(範囲)2368-2372
ページ数5
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E85-A
10
出版ステータス出版済み - 2002/10

ASJC Scopus 主題領域

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「A new updating procedure in the Hopfield-type network and its application to N-Queens problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル