A near-optimum parallel algorithm for bipartite subgraph problem using the Hopfield neural network learning

Rong Long Wang*, Zheng Tang, Qi Ping Cao

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

6 被引用数 (Scopus)

抄録

A near-optimum parallel algorithm for bipartite subgraph problem using gradient ascent learning algorithm of the Hopfield neural networks is presented. This parallel algorithm, uses the Hopfield neural network updating to get a near-maximum bipartite subgraph and then performs gradient ascent learning on the Hopfield network to help the network escape from the state of the near-maximum bipartite subgraph until the state of the maximum bipartite subgraph or better one is obtained. A large number of instances have been simulated to verify the proposed algorithm, with the simulation result showing that our algorithm finds the solution quality is superior to that of best existing parallel algorithm. We also test the proposed algorithm on maximum cut problem. The simulation results also show the effectiveness of this algorithm.

本文言語英語
ページ(範囲)497-504
ページ数8
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E85-A
2
出版ステータス出版済み - 2002/02

ASJC Scopus 主題領域

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「A near-optimum parallel algorithm for bipartite subgraph problem using the Hopfield neural network learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル