A Motion-Direction-Detecting Model for Gray-Scale Images Based on the Hassenstein–Reichardt Model

Zhiyu Qiu, Yuki Todo*, Chenyang Yan*, Zheng Tang

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

1 被引用数 (Scopus)

抄録

The visual system of sighted animals plays a critical role in providing information about the environment, including motion details necessary for survival. Over the past few years, numerous studies have explored the mechanism of motion direction detection in the visual system for binary images, including the Hassenstein–Reichardt model (HRC model) and the HRC-based artificial visual system (AVS). In this paper, we introduced a contrast-response system based on previous research on amacrine cells in the visual system of Drosophila and other species. We combined this system with the HRC-based AVS to construct a motion-direction-detection system for gray-scale images. Our experiments verified the effectiveness of our model in detecting the motion direction in gray-scale images, achieving at least 99% accuracy in all experiments and a remarkable 100% accuracy in several circumstances. Furthermore, we developed two convolutional neural networks (CNNs) for comparison to demonstrate the practicality of our model.

本文言語英語
論文番号2481
ジャーナルElectronics (Switzerland)
12
11
DOI
出版ステータス出版済み - 2023/06

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • 信号処理
  • ハードウェアとアーキテクチャ
  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学

フィンガープリント

「A Motion-Direction-Detecting Model for Gray-Scale Images Based on the Hassenstein–Reichardt Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル