A Modified Hopfield Neural Network for the Minimum Vertex Cover Problem

Xinshun Xu, Zheng Tang, Xiaoming Chen, Jiahai Wang

研究成果: ジャーナルへの寄稿学術論文査読

抄録

The minimum vertex cover(MVC) problem is a classic graph optimization problem. It is well known that it is NP-Complete problem. In this paper, a modified Hopfield neural network is presented for the minimum vertex cover problem. In the modified Hopfield neural network, a correction term is introduced into the motion equation. With this correction term, the modified Hopfield network can find optimal or near-optimal solutions for the minimum vertex cover problem in higher probability. Extensive simulations are performed, and the results show that the modified Hopfield neural network works much better than other existing algorithms for this problem on both random graphs and DEMACS benchmark graphs.

本文言語英語
ページ(範囲)2155-2161
ページ数7
ジャーナルIEEJ Transactions on Electronics, Information and Systems
124
10
DOI
出版ステータス出版済み - 2004

ASJC Scopus 主題領域

  • 電子工学および電気工学

フィンガープリント

「A Modified Hopfield Neural Network for the Minimum Vertex Cover Problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル