抄録
In this article, we propose a method for improving the transiently chaotic neural network (TCNN) by introducing several time-dependent parameters. This method allows the network to have rich chaotic dynamics in its initial stage and to reach a state in which all neurons are stable soon after the last bifurcation. This enables the network to have rich search ability initially and to use less CPU time to reach a stable state. The simulation results on the N-queen problem confirm that this method effectively improves both the solution quality and convergence speed of TCNN.
本文言語 | 英語 |
---|---|
ページ(範囲) | 456-463 |
ページ数 | 8 |
ジャーナル | Neurocomputing |
巻 | 67 |
号 | 1-4 SUPPL. |
DOI | |
出版ステータス | 出版済み - 2005/08 |
ASJC Scopus 主題領域
- コンピュータ サイエンスの応用
- 認知神経科学
- 人工知能