抄録
This paper describes a new learning method for Multiple-Value Logic (MVL) networks using the local search method. It is a "non-back-propagation" learning method which constructs a layered MVL network based on canonical realization of MVL functions, defines an error measure between the actual output value and teacher's value and updates a randomly selected parameter of the MVL network if and only if the updating results in a decrease of the error measure. The learning capability of the MVL network is confirmed by simulations on a large number of 2-variable 4-valued problems and 2-variable 16-valued problems. The simulation results show that the method performs satisfactorily and exhibits good properties for those relatively small problems.
本文言語 | 英語 |
---|---|
ページ(範囲) | 1876-1884 |
ページ数 | 9 |
ジャーナル | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
巻 | E86-A |
号 | 7 |
出版ステータス | 出版済み - 2003/07 |
ASJC Scopus 主題領域
- 信号処理
- コンピュータ グラフィックスおよびコンピュータ支援設計
- 電子工学および電気工学
- 応用数学