A hill-climbing learning method for Hopfield networks

Zheng Tang*, Haihe Jin, Kenji Murao, Okihiko Ishizuka, Koichi Tanno

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

抄録

In this paper, we propose a hill-climbing learning method for Hopfield networks in which the energy of the network is intentionally raised in the weight space so that the network can escape from local minima. This learning method involves repeated updating of the Hopfield network in state space and modification of the weights in weight space if it settles into a local minimum, so that the energy is raised. Shifting of the global minimum during learning can be avoided by updating the state on the unlearned Hopfield network in state space, using equilibrium states obtained from learning as the initial state. Simulations using this learning method show that the Hopfield network can escape from a local minimum which depends on the initial state. A simulation experiment is first conducted with a two-variable Hopfield network, and the convergence of learning and the change of the domain from a local minimum to a global minimum are demonstrated. Then, using an example of the traveling-salesman problem, a simulation is performed using concrete numerical values, and the validity of the method is demonstrated.

本文言語英語
ページ(範囲)28-40
ページ数13
ジャーナルElectronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi)
84
7
DOI
出版ステータス出版済み - 2001

ASJC Scopus 主題領域

  • 電子工学および電気工学

フィンガープリント

「A hill-climbing learning method for Hopfield networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル