A hierarchical gravitational search algorithm with an effective gravitational constant

Yirui Wang, Yang Yu, Shangce Gao*, Haiyu Pan, Gang Yang

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

120 被引用数 (Scopus)

抄録

Gravitational search algorithm (GSA) inspired by the law of gravity is a swarm intelligent optimization algorithm. It utilizes the gravitational force to implement the interaction and evolution of individuals. The conventional GSA achieves several successful applications, but it still faces a premature convergence and a low search ability. To address these two issues, a hierarchical GSA with an effective gravitational constant (HGSA) is proposed from the viewpoint of population topology. Three contrastive experiments are carried out to analyze the performances between HGSA and other GSAs, heuristic algorithms and particle swarm optimizations (PSOs) on function optimization. Experimental results demonstrate the effective property of HGSA due to its hierarchical structure and gravitational constant. A component-wise experiment is also established to further verify the superiority of HGSA. Additionally, HGSA is applied to several real-world optimization problems so as to verify its good practicability and performance. Finally, the time complexity analysis is discussed to conclude that HGSA has the same computational efficiency in comparison with other GSAs.

本文言語英語
ページ(範囲)118-139
ページ数22
ジャーナルSwarm and Evolutionary Computation
46
DOI
出版ステータス出版済み - 2019/05

ASJC Scopus 主題領域

  • コンピュータサイエンス一般
  • 数学一般

フィンガープリント

「A hierarchical gravitational search algorithm with an effective gravitational constant」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル