A Gravitational Search Algorithm with Chaotic Neural Oscillators

Yirui Wang, Shangce Gao*, Yang Yu, Ziqian Wang, Jiujun Cheng, Todo Yuki

*この論文の責任著者

研究成果: ジャーナルへの寄稿学術論文査読

38 被引用数 (Scopus)

抄録

Gravitational search algorithm (GSA) inspired from physics emulates gravitational forces to guide particles' search. It has been successfully applied to diverse optimization problems. However, its search performance is limited by its inherent mechanism where gravitational constant plays an important role in gravitational forces among particles. To improve it, this paper uses chaotic neural oscillators to adjust its gravitational constant, named GSA-CNO. Chaotic neural oscillators can generate various chaotic states according to their parameter settings. Thus, we select four kinds of chaotic neural oscillators to form distinctive chaotic characteristics. Experimental results show that chaotic neural oscillators effectively tune the gravitational constant such that GSA-CNO has good performance and stability against four GSA variants on functions. Three real-world optimization problems demonstrate the promising practicality of GSA-CNO.

本文言語英語
論文番号8981995
ページ(範囲)25938-25948
ページ数11
ジャーナルIEEE Access
8
DOI
出版ステータス出版済み - 2020

ASJC Scopus 主題領域

  • コンピュータサイエンス一般
  • 材料科学一般
  • 工学一般

フィンガープリント

「A Gravitational Search Algorithm with Chaotic Neural Oscillators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル