A fast and reliable approach to TSP using positively self-feedbacked hopfield networks

Yong Li*, Zheng Tang, Guang Pu Xia, Kong Long Wang, Xinshun Xu

*この論文の責任著者

研究成果: 会議への寄与学会論文査読

抄録

In this paper, a fast and reliable approach to the Traveling Salesman Problem (TSP) using the positively self-feedbacked Hopfield neural networks is proposed. The Hopfield neural networks with positive self-feedbacks and its collective computational properties are studied. It is proved theoretically and confirmed by simulating the randomly generated Hopfield neural networks with positive self-feedbacks that the emergent collective properties of the original Hopfield neural networks also are present in this network, The network is applied to the TSP and results of computer simulations are presented and used to illustrate the computation power of the networks. The simulation results show that the Hopfield neural networks with positive self-feedbacks has a rate of success higher than the original Hopfield neural networks for solving the TSP, and converges faster to stable solution than the original Hopfield neural networks does.

本文言語英語
ページ1095-1100
ページ数6
出版ステータス出版済み - 2004
イベントSICE Annual Conference 2004 - Sapporo, 日本
継続期間: 2004/08/042004/08/06

学会

学会SICE Annual Conference 2004
国/地域日本
CitySapporo
Period2004/08/042004/08/06

ASJC Scopus 主題領域

  • 制御およびシステム工学
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「A fast and reliable approach to TSP using positively self-feedbacked hopfield networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル