A Dendritic Architecture-Based Deep Learning for Tumor Detection

Shibo Dong, Zhipeng Liu, Haotian Li, Zhenyu Lei, Shangce Gao*

*この論文の責任著者

研究成果: ジャーナルへの寄稿Letter査読

2 被引用数 (Scopus)

抄録

Brain tumor detection typically involves classifying various tumor types. Traditional classifiers, based on the McCulloch-Pitts model, have faced criticism due to their oversimplified structure and limited capabilities in detecting brain tumor images with complex features. In this study, we propose a multiclassification model inspired by dendritic architectures in neurons, which leverages synaptic and dendritic nonlinear information processing capabilities. Experimental results using brain tumor detection datasets demonstrate that our proposed model outperforms other state-of-the-art models across all evaluation metrics.

本文言語英語
ページ(範囲)1091-1093
ページ数3
ジャーナルIEEJ Transactions on Electrical and Electronic Engineering
19
6
DOI
出版ステータス出版済み - 2024/06

ASJC Scopus 主題領域

  • 電子工学および電気工学

フィンガープリント

「A Dendritic Architecture-Based Deep Learning for Tumor Detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル