A Comparative study of the cubic interpolated propagation method and the finite difference method on approximation accuracy of the lattice boltzmann equation for spatial derivative

Takeshi Seta, Kenichi Okui

研究成果: ジャーナルへの寄稿学術論文査読

抄録

Spatial derivative of the distribution function follows the lattice Boltzmann equation (LBE), because the advection term in the kinetic equation is linear in the lattice Boltzmann method. The cubic interpolated propagation (CIP) method and the finite difference method (FDM) are employed to discretize the kinetic equation for spatial derivative. We comparatively verify the approximation accuracy of the CIP and of the FDM with simulations of the Taylor vortex flow, of the Poiseuille flow, and of the unsteady Couette flow. The simulation result of the Taylor vortex flow reveals that the FDM indicates the 2nd-order accurate spatial convergence rate, and the applicability of the CIP method to the LBE is not good enough. The numerical simulations show that the differentiation of fluid density and of velocity is able to be calculated by a simple arithmetic calculation of the spatial derivative of the distribution function.

本文言語英語
ページ(範囲)383-388
ページ数6
ジャーナルTheoretical and Applied Mechanics Japan
56
DOI
出版ステータス出版済み - 2008

ASJC Scopus 主題領域

  • 数学一般
  • 凝縮系物理学
  • 材料力学

フィンガープリント

「A Comparative study of the cubic interpolated propagation method and the finite difference method on approximation accuracy of the lattice boltzmann equation for spatial derivative」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル