Abstract
Methanol synthesis from syngas is a crucial process in the transformation of coal, natural gas and biomass into high-value added products. The high CO conversion and methanol yield are challenging in low-temperature methanol synthesis, thus improving catalyst activity is necessary. Cu/ZnO nanoparticles with a narrow size distribution were synthesized via homogeneous precipitation method using urea as the precipitant, being followed by supercritical CO2 drying treatment (named as CZhp-S). The analysis results rendered that CZhp-S had a lower reduction temperature, higher Cu0 specific surface area and smaller crystal sizes compared with those of the catalyst prepared by co-precipitation method with conventional drying process (named as CZcp-H). Due to the large specific surface area and the enhanced amount of active sites, the CZhp-S with optimized supercritical CO2 drying treatment condition demonstrated a maximum CO conversion of 52.7% and STY of methanol 87.6 gMeOH/kgcatalyst.h−1 for low-temperature methanol synthesis from syngas, which were much higher than those of CZcp-H (CO conversion 36.5%, STY of methanol 62.9 gMeOH/kgcatalyst.h−1).
Original language | English |
---|---|
Article number | 117213 |
Journal | Fuel |
Volume | 268 |
DOIs | |
State | Published - 2020/05/15 |
Keywords
- Homogeneous precipitation
- Methanol synthesis
- Supercritical phase CO drying
- Syngas
- Urea hydrolysis
ASJC Scopus subject areas
- General Chemical Engineering
- Fuel Technology
- Energy Engineering and Power Technology
- Organic Chemistry