Tonic inhibition by G Protein-Coupled receptor Kinase 2 of Akt/Endothelial Nitric-Oxide synthase signaling in human vascular endothelial cells under conditions of Hyperglycemia with high insulin levels

Kumiko Taguchi, Kimimasa Sakata, Wakana Ohashi, Takahiro Imaizumi, Joji Imura, Yuichi Hattori*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

G protein-coupled receptor kinase 2 (GRK2) participates together with b-Arrestins in the regulation of G protein-coupled receptor signaling, but emerging evidence suggests that GRK2 can interact with a growing number of proteins involved in signaling mediated by other membrane receptor families under various pathologic conditions. We tested the hypothesis that GRK2 may be an important contributor to vascular endothelial dysfunction in diabetes. Human umbilical venous endothelial cells (HUVECs) were exposed to high glucose and high insulin (HG/HI) to mimic insulin-resistant diabetic conditions. GRK2 expression and membrane translocation were up-regulated under HG/HI conditions. HG/HI did not modify activation of Akt or endothelial nitric-oxide synthase (eNOS), but GRK2 inhibitor or small interfering RNA (siRNA) resulted in an increase in Akt and eNOS activation in HUVECs exposed to HG/HI. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation was increased after exposure to HG/HI, which was prevented by GRK2 inhibitor or siRNA. ERK1/ 2-mediated GRK2 phosphorylation at Ser-670 confirmed that ERK1/2 participated in a negative feedback regulatory loop. In human embryonic kidney 293T cells that overexpressed GRK2, Akt activity was unchanged, whereas ERK1/2 activity was raised. The effect of GRK inhibitor treatment on Akt/eNOS signaling was associated with membrane translocation of b-Arrestin 2. The experiments with b-Arrestin 2 siRNA showed that b-Arrestin 2 may act as a positive modulator of Akt/eNOS signaling. Our studies reveal that GRK2, which is up-regulated by HG/HI, leads to a tonic inhibition of the insulin Akt/eNOS pathway in endothelial cells. We provide new insights into the pathogenesis of diabetes-Associated vascular endothelial dysfunction.

Original languageEnglish
Pages (from-to)199-208
Number of pages10
JournalJournal of Pharmacology and Experimental Therapeutics
Volume349
Issue number2
DOIs
StatePublished - 2014/05

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Fingerprint

Dive into the research topics of 'Tonic inhibition by G Protein-Coupled receptor Kinase 2 of Akt/Endothelial Nitric-Oxide synthase signaling in human vascular endothelial cells under conditions of Hyperglycemia with high insulin levels'. Together they form a unique fingerprint.

Cite this