Thermodynamic conditions of MgO and MgO∙Al2O3 formation and variation of inclusions formed in Fe-17mass%Cr steel at 1 873 K

Katsuyoshi Okumoto, Kengo Kato, Hideki Ono*, Yoshihiko Higuchi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Demands for cleanliness of high chromium steel have been increasing. In steel refining process, aluminum is usually added in molten steel as a deoxidizing agent. As a result, such inclusions as alumina (Al2O3) and spinel (MgO∙Al2O3) are formed, which cause fatigue failures and surface defects. Therefore, it is important to understand the conditions of the inclusions which form in high chromium steel, and to reduce their harmful effects on steel qualities. In this work, to begin with, thermodynamic conditions of MgO and MgO∙Al2O3 formation in Fe-17mass%Cr molten steel at 1 873 K were investigated. The results showed that MgO is more stable in high chromium steel than in plain steel. The boundary of the stable condition of MgO and MgO∙Al2O3 shifts toward higher Al and lower Mg contents in high Cr steel. This cause is judged to be the effect of thermodynamic interaction between Cr and Mg. The interaction parameter of Cr on Mg was estimated to be 0.040 so that the boundary of stable condition of MgO and MgO∙Al2O3 can be explained. Moreover, phase stability diagram of Fe-Cr-Al-Ca-Mg-O system at 1 873 K was developed to estimate the effect of chromium on the stable condition of MgO, MgO∙Al2O3 and CaO-MgO-Al2O3(l). Subsequently, the variations of inclusions which formed in Fe-17mass%Cr molten steel were also investigated at 1 873 K. The variations of inclusions in molten Fe-Cr steel were reasonably explained by considering the stable conditions of MgO and MgO∙Al2O3 investigated in this work.

Original languageEnglish
Pages (from-to)2370-2380
Number of pages11
JournalISIJ International
Volume61
Issue number9
DOIs
StatePublished - 2021

Keywords

  • Alumina inclusion
  • CaO-MgO-AlO inclusion
  • Deoxidation
  • Inclusion
  • MgO inclusion
  • Slag
  • Spinel inclusion
  • Stainless steel

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Thermodynamic conditions of MgO and MgO∙Al2O3 formation and variation of inclusions formed in Fe-17mass%Cr steel at 1 873 K'. Together they form a unique fingerprint.

Cite this