The microstructures and mechanical properties of hot-processed magnesium casting alloys

Translated title of the contribution: The microstructures and mechanical properties of hot-processed magnesium casting alloys

Takeshi Yamaguchi, Tadayoshi Tsukeda, Ken Saito, Yoshihito Kawamura

Research output: Contribution to conferencePaper

3 Scopus citations

Abstract

In order to make the effect of processing clear, AM50A magnesium casting alloys were extruded at various extrusion conditions such as extrusion temperature and extrusion ratio. The mechanical properties of AM50A alloy increased with decreasing extrusion temperature. Tensile yield strength and tensile strength of extruded AM50A alloy were 389MPa and 420MPa respectively when the extrusion temperature was 348K. The microstracture of the extruded magnesium alloy showed large grains stretched to the extrusion direction and fine recrystallized grains. Decreased extrusion temperature resulted in improved strength and decreased elongation with increasing of the degree of work hardens and extrusion force. When the extrusion ratio is high, improvement of strength is prevented by rycrystallization and it was observed as crystal orientation by XRD. The elongation of the extrusion increased with the recrystallization of grains. Every magnesium alloy extruded at low temperature has high strength.
Translated title of the contributionThe microstructures and mechanical properties of hot-processed magnesium casting alloys
Original languageUndefined/Unknown
Pages775-780
Number of pages6
DOIs
StatePublished - 2006

Fingerprint

Dive into the research topics of 'The microstructures and mechanical properties of hot-processed magnesium casting alloys'. Together they form a unique fingerprint.

Cite this