TY - JOUR
T1 - Temporal variations of surface mass balance over the last 5000 years around Dome Fuji, Dronning Maud Land, East Antarctica
AU - Oyabu, Ikumi
AU - Kawamura, Kenji
AU - Fujita, Shuji
AU - Inoue, Ryo
AU - Motoyama, Hideaki
AU - Fukui, Kotaro
AU - Hirabayashi, Motohiro
AU - Hoshina, Yu
AU - Kurita, Naoyuki
AU - Nakazawa, Fumio
AU - Ohno, Hiroshi
AU - Sugiura, Konosuke
AU - Suzuki, Toshitaka
AU - Tsutaki, Shun
AU - Abe-Ouchi, Ayako
AU - Niwano, Masashi
AU - Parrenin, Frédéric
AU - Saito, Fuyuki
AU - Yoshimori, Masakazu
N1 - Publisher Copyright:
© 2023 The Author(s).
PY - 2023/2/2
Y1 - 2023/2/2
N2 - We reconstructed surface mass balance (SMB) around Dome Fuji, Antarctica, over the last 5000 years using the data from 15 shallow ice cores and seven snow pits. The depth-age relationships for the ice cores were determined by synchronizing them with a layer-counted ice core from West Antarctica (WAIS Divide ice core) using volcanic signals. The reconstructed SMB records for the last 4000 years show spatial patterns that may be affected by their locations relative to the ice divides around Dome Fuji, proximity to the ocean, and wind direction. The SMB records from the individual ice cores and snow pits were stacked to reconstruct the SMB history in the Dome Fuji area. The stacked record exhibits a long-term decreasing trend at -0.037±0.005g€¯kgg€¯m-2 per century over the last 5000 years in the preindustrial period. The decreasing trend may be the result of long-term surface cooling over East Antarctica and the Southern Ocean and sea ice expansion in the water vapor source areas. The multidecadal to centennial variations of the Dome Fuji SMB after detrending the record shows four distinct periods during the last millennium: a mostly negative period before 1300g€¯CE, a slightly positive period from 1300 to 1450g€¯CE, a slightly negative period from 1450 to 1850g€¯CE with a weak maximum around 1600g€¯CE, and a strong increase after 1850g€¯CE. These variations are consistent with those of previously reconstructed SMB records in the East Antarctic plateau. The low accumulation rate periods tend to coincide with the combination of strong volcanic forcings and solar minima for the last 1000 years, but the correspondence is not clear for the older periods, possibly because of the lack of coincidence of volcanic and solar forcings or the deterioration of the SMB record due to a smaller number of stacked cores.
AB - We reconstructed surface mass balance (SMB) around Dome Fuji, Antarctica, over the last 5000 years using the data from 15 shallow ice cores and seven snow pits. The depth-age relationships for the ice cores were determined by synchronizing them with a layer-counted ice core from West Antarctica (WAIS Divide ice core) using volcanic signals. The reconstructed SMB records for the last 4000 years show spatial patterns that may be affected by their locations relative to the ice divides around Dome Fuji, proximity to the ocean, and wind direction. The SMB records from the individual ice cores and snow pits were stacked to reconstruct the SMB history in the Dome Fuji area. The stacked record exhibits a long-term decreasing trend at -0.037±0.005g€¯kgg€¯m-2 per century over the last 5000 years in the preindustrial period. The decreasing trend may be the result of long-term surface cooling over East Antarctica and the Southern Ocean and sea ice expansion in the water vapor source areas. The multidecadal to centennial variations of the Dome Fuji SMB after detrending the record shows four distinct periods during the last millennium: a mostly negative period before 1300g€¯CE, a slightly positive period from 1300 to 1450g€¯CE, a slightly negative period from 1450 to 1850g€¯CE with a weak maximum around 1600g€¯CE, and a strong increase after 1850g€¯CE. These variations are consistent with those of previously reconstructed SMB records in the East Antarctic plateau. The low accumulation rate periods tend to coincide with the combination of strong volcanic forcings and solar minima for the last 1000 years, but the correspondence is not clear for the older periods, possibly because of the lack of coincidence of volcanic and solar forcings or the deterioration of the SMB record due to a smaller number of stacked cores.
UR - http://www.scopus.com/inward/record.url?scp=85147891979&partnerID=8YFLogxK
U2 - 10.5194/cp-19-293-2023
DO - 10.5194/cp-19-293-2023
M3 - 学術論文
AN - SCOPUS:85147891979
SN - 1814-9324
VL - 19
SP - 293
EP - 321
JO - Climate of the Past
JF - Climate of the Past
IS - 2
ER -