Quenching autofluorescence of insect tissues for in situ detection of endosymbionts

Ryuichi Koga*, Tsutomu Tsuchida, Takema Fukatsu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

117 Scopus citations

Abstract

Oligonucleotide-probed fluorescent in situ hybridization (FISH) targeting 16S rRNA is a powerful technique for detecting and characterizing bacterial cells in environmental samples without cultivation; however, general application of the technique to insect endosymbionts has been hindered by the strong autofluorescence frequently observed in insect tissues. Here we describe a protocol that markedly reduces autofluorescence of insect tissues by hydrogen peroxide (H2O2) treatment, whereby 16S rRNA of bacterial endosymbionts is kept in a FISH-detectable condition. Among various histological fixatives, Carnoy's solution was superior in that whole insects were successfully fixed and autofluorescence of insect tissues was suppressed in comparison with the widely used formaldehyde-based fixatives. Treatment with both alcoholic 6% H2O2 solution and aqueous 6% H2O2 solution markedly reduced autofluorescence of the fixed insect tissues, wherein the former kept 16S rRNA of bacterial endosymbiont in a FISH-detectable condition while the latter failed to do so. The protocol was applicable to endosymbionts of diverse insects such as aphids, lice and bat flies. The protocol was applicable not only to fresh insect samples but also to archival insect samples preserved in acetone for several years. We propose a general and robust protocol for quenching autofluorescence of insect tissues for FISH detection of bacterial endosymbionts, which is potentially applicable to endosymbionts of a wider range of organisms with considerable autofluorescence.

Original languageEnglish
Pages (from-to)281-291
Number of pages11
JournalApplied Entomology and Zoology
Volume44
Issue number2
DOIs
StatePublished - 2009

Keywords

  • Carnoy's solution
  • Fluorescent in situ hybridization
  • Hydrogen peroxide
  • Quenching autofluorescence of insect tissues

ASJC Scopus subject areas

  • Insect Science

Fingerprint

Dive into the research topics of 'Quenching autofluorescence of insect tissues for in situ detection of endosymbionts'. Together they form a unique fingerprint.

Cite this