TY - GEN
T1 - Preparation and reduction behavior of carbon composite pellets using semi-charcoal
AU - Usui, Tateo
AU - Konishi, Hirokazu
AU - Ichikawa, Kazuhira
AU - Ono, Hideki
PY - 2012
Y1 - 2012
N2 - Japanese cypress was carbonized partly at maximum carbonization temperature TC, max = 823, 1,073 and 1,273 K in order to obtain semi-charcoal with some residual volatile matter (V.M.). The semi-charcoal obtained at T C, max = 823 K retained much V.M., mainly H2. The gasification of semi-charcoal and coke samples were carried out at gasification temperature TG = 1,073 K, 1,173 K and 1,273 K in CO2 gas atmosphere. The gasification rate of a semi-charcoal sample obtained at T C, max = 823 K was the highest, but the difference of rate in all semi-charcoal samples were much small. The activation energy was estimated as 138 kJ/mol, 139 kJ/mol, 162 kJ/mol and 219 kJ/mol, respectively for semi-charcoal obtained at TC, max = 823 K, 1,073 K, 1,273 K and coke samples. Then, carbon composite pellets using semi-charcoal with the particle size of 63∼75 μm have been prepared and reduced at reduction temperature TR = 1,173 K in N2 gas atmosphere. Fractional reduction F(%) after 60 min of the carbon composite pellet using semi-charcoal obtained at TC, max = 823 K was 40%, and was higher than any other pellets. On the other hand, fractional reduction F(%) of carbon composite pellet using semi-charcoal obtained at TC, max = 1,073 K with the particle size of 23∼35 μm was 38% for 60 min at TR = 1,173 K, and was higher than any other pellets with the particle sizes of 63∼75 μm and 105∼150 μm.
AB - Japanese cypress was carbonized partly at maximum carbonization temperature TC, max = 823, 1,073 and 1,273 K in order to obtain semi-charcoal with some residual volatile matter (V.M.). The semi-charcoal obtained at T C, max = 823 K retained much V.M., mainly H2. The gasification of semi-charcoal and coke samples were carried out at gasification temperature TG = 1,073 K, 1,173 K and 1,273 K in CO2 gas atmosphere. The gasification rate of a semi-charcoal sample obtained at T C, max = 823 K was the highest, but the difference of rate in all semi-charcoal samples were much small. The activation energy was estimated as 138 kJ/mol, 139 kJ/mol, 162 kJ/mol and 219 kJ/mol, respectively for semi-charcoal obtained at TC, max = 823 K, 1,073 K, 1,273 K and coke samples. Then, carbon composite pellets using semi-charcoal with the particle size of 63∼75 μm have been prepared and reduced at reduction temperature TR = 1,173 K in N2 gas atmosphere. Fractional reduction F(%) after 60 min of the carbon composite pellet using semi-charcoal obtained at TC, max = 823 K was 40%, and was higher than any other pellets. On the other hand, fractional reduction F(%) of carbon composite pellet using semi-charcoal obtained at TC, max = 1,073 K with the particle size of 23∼35 μm was 38% for 60 min at TR = 1,173 K, and was higher than any other pellets with the particle sizes of 63∼75 μm and 105∼150 μm.
KW - Carbon composite pellet
KW - Carbonization
KW - Charcoal
KW - Reduction of iron oxide
UR - http://www.scopus.com/inward/record.url?scp=84883694362&partnerID=8YFLogxK
M3 - 会議への寄与
AN - SCOPUS:84883694362
SN - 9781627480215
T3 - 6th Int. Congress on the Science and Technology of Ironmaking 2012, ICSTI 2012 - Including Proceedings from the 42nd Ironmaking and Raw Materials Seminar, and the 13th Brazilian Symp. on Iron Ore
SP - 698
EP - 709
BT - 6th Int. Congress on the Science and Technology of Ironmaking 2012, ICSTI 2012 - Including Proceedings from the 42nd Ironmaking and Raw Materials Seminar, and the 13th Brazilian Symp. on Iron Ore
T2 - 6th International Congress on the Science and Technology of Ironmaking 2012, ICSTI 2012
Y2 - 14 October 2012 through 18 October 2012
ER -