One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst

Ce Du, Linet Gapu Chizema, Emmerson Hondo, Mingliang Tong, Qingxiang Ma, Xinhua Gao, Ruiqin Yang, Peng Lu*, Noritatsu Tsubaki

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Light olefins (C2–C4) are fundamental building blocks for the manufacture of polymers, chemical intermediates, and solvents. In this work, we realized a composite catalyst, comprising MnxZry oxides and SAPO-34 zeolite, which can convert syngas (CO + H2) into light olefins. MnxZry oxide catalysts with different Mn/Zr molar ratios were facilely prepared using the coprecipitation method prior to physical mixing with SAPO-34 zeolite. The redox properties, surface morphology, electronic state, crystal structure, and chemical elemental composition of the catalysts were examined using H2-TPR, SEM, XPS, XRD, and EDS techniques, respectively. Tandem reactions involved activation of CO and subsequent hydrogenation over the metal oxide catalyst, producing methanol and dimethyl ether as the main reaction intermediates, which then migrated onto SAPO-34 zeolite for light olefins synthesis. Effects of temperature, pressure and reactant gas flow rate on CO conversion and light olefins selectivity were investigated in detail. The Mn1Zr2/SAPO-34 catalyst (Mn/Zr ratio of 1:2) attained a CO conversion of 10.8% and light olefins selectivity of 60.7%, at an optimized temperature, pressure and GHSV of 380 °C, 3 MPa and 3000 h−1 respectively. These findings open avenues to exploit other metal oxides with CO activation capabilities for a more efficient syngas conversion and product selectivity.

Original languageEnglish
Pages (from-to)101-110
Number of pages10
JournalChinese Journal of Chemical Engineering
Volume36
DOIs
StatePublished - 2021/08

Keywords

  • CO activation
  • Catalyst
  • C–C coupling
  • Hydrogenation
  • Light olefins
  • Syngas

ASJC Scopus subject areas

  • Environmental Engineering
  • Biochemistry
  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'One-step conversion of syngas to light olefins over bifunctional metal-zeolite catalyst'. Together they form a unique fingerprint.

Cite this