Abstract
Endosymbiotic bacteria of the genus Wolbachia often manipulate the reproductive system of their hosts to propagate themselves in host populations. Ostrinia scapulalis moths infected with Wolbachia (wSca) produce female-only progeny (sex chromosomes: ZW), whereas females cured of the infection by antibiotic treatment produce male-only progeny (ZZ). The occurrence of female- and male-only progeny has been attributed to the specific death of the opposite sex during embryonic and larval development. In this bidirectional sex-specific lethality, embryos destined to die express a phenotypic sex opposite to their genotypic sex. On the basis of these findings, we suggested that wSca carries a genetic factor that feminizes the male host, the W chromosome of the host has lost its feminizing function, and discordance between the genotypic and phenotypic sexes underlies this sex-specific death. In the present study, we examined whether the failure of dosage compensation was responsible for this sex-specific mortality. Quantitative PCRs showed that Z-linked gene expression levels in embryos destined to die were not properly dosage compensated; they were approximately two-fold higher in the male progeny of wSca-infected females and approximately two-fold lower in the female progeny of infected-and-cured females. These results support our hypothesis that misdirection of dosage compensation underlies the sex-specific death.
Original language | English |
---|---|
Pages (from-to) | 72-76 |
Number of pages | 5 |
Journal | Insect Biochemistry and Molecular Biology |
Volume | 66 |
DOIs | |
State | Published - 2015/11/01 |
Keywords
- Dosage compensation
- Feminization
- Male killing
- Ostrinia scapulalis
- Sex-specific death
- Wolbachia
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Insect Science