Abstract
Zeolite nanosheets with a short b-axis thickness are highly desirable in lots of catalytic reactions due to their reduced diffusion resistance. Nevertheless, conventional synthesis methods usually require expensive structure-directing agents (SDAs), pricey raw materials, and eco-unfriendly fluorine-containing additives. Here, we contributed a cost-effective and fluoride-free synthesis method for synthesizing high-quality MFI zeolite nanosheets through a Silicalite-1 (Sil-1) seed suspension and urea cooperative strategy, only with inexpensive colloidal silica as the Si source. Our approach was effective for synthesizing both Sil-1 and aluminum-containing ZSM-5 nanosheets. By optimizing key synthesis parameters, including seed aging time, seed quantity, and urea concentration, we achieved precise control over the crystal face aspect ratio and b-axis thickness. We also revealed a non-classical oriented nanosheet growth mechanism, where Sil-1 seeds induced the formation of quasi-ordered precursor particles, and the (010) crystal planes of these particles facilitated urea adsorption, thereby promoting c-axis-oriented growth. The obtained ZSM-5 nanosheets exhibited exceptional catalytic performance in the benzene alkylation with ethanol, maintaining stability for over 500 h, which is 5 times longer than traditional ZSM-5 catalysts. Furthermore, large-scale production of ZSM-5 nanosheets was successfully carried out in a 3 L high-pressure autoclave, yielding samples consistent with those from laboratory-scale synthesis. This work marks a significant step forward in the sustainable and efficient production of MFI nanosheets using inexpensive and environmentally friendly raw materials, offering the broad applicability in catalysis.
Original language | English |
---|---|
Pages (from-to) | 458-468 |
Number of pages | 11 |
Journal | Journal of Energy Chemistry |
Volume | 100 |
DOIs | |
State | Published - 2025/01 |
Keywords
- Aromatic alkylation
- MFI zeolite
- Nanosheets
- Scale-up synthesis
- ZSM-5
ASJC Scopus subject areas
- Fuel Technology
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Electrochemistry