High-speed and local-changes invariant image matching

Chao Zhang, Takuya Akashi

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

In recent years, many variants of key point based image descriptors have been designed for the image matching, and they have achieved remarkable performances. However, to some images, local features appear to be inapplicable. Since theses images usually have many local changes around key points compared with a normal image, we define this special image category as the image with local changes (IL). An IL pair (ILP) refers to an image pair which contains a normal image and its IL. ILP usually loses local visual similarities between two images while still holding global visual similarity. When an IL is given as a query image, the purpose of this work is to match the corresponding ILP in a large scale image set. As a solution, we use a compressed HOG feature descriptor to extract global visual similarity. For the nearest neighbor search problem, we propose random projection indexed KD-tree forests (rKDFs) to match ILP efficiently instead of exhaustive linear search. rKDFs is built with large scale low-dimensional KD-trees. Each KD-tree is built in a random projection indexed subspace and contributes to the final result equally through a voting mechanism. We evaluated our method by a benchmark which contains 35,000 candidate images and 5,000 query images. The results show that our method is efficient for solving local-changes invariant image matching problems.

Original languageEnglish
Pages (from-to)1958-1966
Number of pages9
JournalIEICE Transactions on Information and Systems
VolumeE98D
Issue number11
DOIs
StatePublished - 2015/11

Keywords

  • Feature compression
  • Image matching
  • Local-changes invariant
  • Random projection indexed KD-tree forests

ASJC Scopus subject areas

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering
  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'High-speed and local-changes invariant image matching'. Together they form a unique fingerprint.

Cite this