TY - JOUR
T1 - High mobility group box 1 promotes small intestinal damage induced by nonsteroidal anti-inflammatory drugs through toll-like receptor 4
AU - Nadatani, Yuji
AU - Watanabe, Toshio
AU - Tanigawa, Tetsuya
AU - Machida, Hirohisa
AU - Okazaki, Hirotoshi
AU - Yamagami, Hirokazu
AU - Watanabe, Kenji
AU - Tominaga, Kazunari
AU - Fujiwara, Yasuhiro
AU - Arakawa, Tetsuo
PY - 2012/7
Y1 - 2012/7
N2 - Release of high mobility group box 1 (HMGB1) from damaged cells, which is involved in many types of tissue injuries, activates inflammatory pathways by stimulating multiple receptors, including Toll-like receptor 2 (TLR2), TLR4, and receptor for advanced glycation end-products (RAGE). Our objective was to determine the role of HMGB1 in nonsteroidal anti-inflammatory drug (NSAID)-induced damage of the small intestine. Oral indomethacin (10 mg/kg) induced damage to the small intestine and was associated with increases in intestinal HMGB1 expression and serum HMGB1 levels. In wild-type mice, recombinant human HMGB1 aggravated indomethacin-induced small intestinal damage; enhanced the mRNA expression levels of tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1, and KC; activated nuclear factor kappa B; and stimulated phosphorylation of the mitogen-activated protein kinases p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). In contrast, blocking HMGB1 action with neutralizing antibodies prevented damage and inhibited both inflammatory cytokine overexpression and activation of these intracellular signaling pathways. TLR2-knockout (KO) and RAGE-KO mice exhibited high sensitivities to indomethacin-induced damage, similar to wild-type mice, whereas TLR4-KO mice exhibited less severe intestinal damage and lower levels of TNF-α mRNA expression. Exogenous HMGB1 aggravated the damage in TLR2- and RAGE-KO mice but did not affect the damage in TLR4-KO mice. Thus, our results suggest that HMGB1 promotes NSAID-induced small intestinal damage through TLR4-dependent signaling pathways.
AB - Release of high mobility group box 1 (HMGB1) from damaged cells, which is involved in many types of tissue injuries, activates inflammatory pathways by stimulating multiple receptors, including Toll-like receptor 2 (TLR2), TLR4, and receptor for advanced glycation end-products (RAGE). Our objective was to determine the role of HMGB1 in nonsteroidal anti-inflammatory drug (NSAID)-induced damage of the small intestine. Oral indomethacin (10 mg/kg) induced damage to the small intestine and was associated with increases in intestinal HMGB1 expression and serum HMGB1 levels. In wild-type mice, recombinant human HMGB1 aggravated indomethacin-induced small intestinal damage; enhanced the mRNA expression levels of tumor necrosis factor α (TNF-α), monocyte chemotactic protein 1, and KC; activated nuclear factor kappa B; and stimulated phosphorylation of the mitogen-activated protein kinases p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). In contrast, blocking HMGB1 action with neutralizing antibodies prevented damage and inhibited both inflammatory cytokine overexpression and activation of these intracellular signaling pathways. TLR2-knockout (KO) and RAGE-KO mice exhibited high sensitivities to indomethacin-induced damage, similar to wild-type mice, whereas TLR4-KO mice exhibited less severe intestinal damage and lower levels of TNF-α mRNA expression. Exogenous HMGB1 aggravated the damage in TLR2- and RAGE-KO mice but did not affect the damage in TLR4-KO mice. Thus, our results suggest that HMGB1 promotes NSAID-induced small intestinal damage through TLR4-dependent signaling pathways.
UR - http://www.scopus.com/inward/record.url?scp=84862673319&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2012.03.039
DO - 10.1016/j.ajpath.2012.03.039
M3 - 学術論文
C2 - 22634181
AN - SCOPUS:84862673319
SN - 0002-9440
VL - 181
SP - 98
EP - 110
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 1
ER -