Abstract
The rapid migration and separation of photoinduced carriers is a key factor influencing photocatalytic efficiency. Constructing an S-scheme heterojunction is a strategic technique to enhance the separation of photo-generated carriers and boost overall catalytic activity. Herein, a simple physical stirring technique was adopted to successfully fabricate a novel NiCo2S4/CoTiO3 S-scheme heterojunction photocatalyst. Upon exposure to light, the NiCo2S4/CoTiO3-10 specimen demonstrated an outstanding hydrogen evolution rate of 2037.76 µmol·g−1·h−1, exceeding twice the rate observed for the pristine NiCo2S4 (833.72 µmol·g−1·h−1). The experimental outcomes reveal that the incorporation of CoTiO3 significantly enhances the charge separation and transfer within the system. Concurrently, the formation of the S-scheme mechanism facilitates the separation of carriers while maintaining high redox capabilities. This work introduces an innovative approach to forming S-scheme heterojunctions based on bimetallic sulfides, thereby offering new prospects for the efficient utilization of solar energy.
Original language | English |
---|---|
Article number | 7 |
Journal | Frontiers of Chemical Science and Engineering |
Volume | 19 |
Issue number | 1 |
DOIs | |
State | Published - 2025/01 |
Keywords
- CoTiO
- NiCoS
- S-scheme heterojunction
- in situ X-ray photoelectron spectroscopy
ASJC Scopus subject areas
- General Chemical Engineering