Effect of Cerebrospinal Fluid Circulation on Nose-to-Brain Direct Delivery and Distribution of Caffeine in Rats

Daisuke Inoue*, Tomoyuki Furubayashi, Akiko Tanaka, Toshiyasu Sakane, Kiyohiko Sugano

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Direct drug delivery from nose to brain has drawn much attention as an effective strategy for the treatment of central nervous system diseases. After intranasal administration, drug molecules can be directly delivered from the nose to the brain. However, the detailed mechanism for this direct delivery to the brain has not been elucidated. In the present study, the effect of the activation of the cerebral fluid circulation (the glymphatic system) on the efficacy of direct delivery from nose to brain was investigated. Because the glymphatic system is activated by some anesthetic regimens, the differences in brain delivery and the pharmacokinetics under anesthetic and conscious conditions were compared in rats. Under urethane anesthesia, direct delivery from the nose to the brain was facilitated, whereas the brain uptake from the systemic circulation via the blood-brain barrier was decreased. In addition, both the brain uptake of caffeine injected into the subarachnoid cerebrospinal fluid (CSF) and the extracerebral clearance of caffeine after intrastriatal injection were enhanced under anesthesia. For intranasal administration, caffeine was transported directly from the nose to the CSF and then delivered into the brain parenchyma by the CSF circulation. The results obtained in the present study clarified that the direct delivery from nose to brain could be facilitated by anesthesia. These findings suggest that fluid circulation in the brain can contribute to a wider cerebral distribution of the drug after direct delivery from nose to brain.

Original languageEnglish
Pages (from-to)4067-4076
Number of pages10
JournalMolecular Pharmaceutics
Volume17
Issue number11
DOIs
StatePublished - 2020/11/02

Keywords

  • CNS drugs
  • anesthesia
  • brain drug delivery
  • cerebral fluid circulation
  • direct delivery from nose to brain
  • glymphatic system

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmaceutical Science
  • Drug Discovery

Fingerprint

Dive into the research topics of 'Effect of Cerebrospinal Fluid Circulation on Nose-to-Brain Direct Delivery and Distribution of Caffeine in Rats'. Together they form a unique fingerprint.

Cite this