TY - JOUR
T1 - Decrease of lactogenic hormones induce epithelial-mesenchymal transition via TGFβ1 and arachidonic acid during mammary gland involution
AU - Zhang, Haolin
AU - Liu, Yuning
AU - Weng, Ji
AU - Usuda, Kento
AU - Fujii, Kazuki
AU - Watanabe, Gen
AU - Nagaoka, Kentaro
N1 - Publisher Copyright:
© 2017 by the Society for Reproduction and Development.
PY - 2017
Y1 - 2017
N2 - During mammary gland involution, the epithelial mesenchymal transition (EMT) process plays an important role in tissue remodelling and in the termination of milk production. Transforming growth factor β (TGFβ) has been known as a central inducer to EMT and contributor to the mammary gland involution. However, the whole mechanism has accomplished the EMT process in mammary gland is still unclear. Here, we show that arachidonic acid, one of the major products in milk, is new player to control the EMT together with TGFβ during mammary gland involution. Firstly, we observed decrease in CDH1 (epithelial marker gene) expression and increases in VIM and TWIST1 (mesenchymal marker genes), TGFB1, and PLCG2 (arachidonic acid synthesis gene) at involution. In epithelial cells culture experiments, depletion of lactogenic hormones to mimic the involution induced TGFβ1 and PLCG2 expressions. Treatment with arachidonic acid in epithelial cells increased VIM and TWIST1 expressions without decrease of CDH1 expression, while TGFβ1 decreased CDH1 and increased VIM and TWIST1; more importantly, TGFβ1 induced the expression of PLCG2, but arachidonic acid did not induce the expression of TGFB1. Finally, arachidonic acid accelerated the TGFβ1 increasing VIM and TWIST1 expressions, meanwhile arachidonic acid synthase inhibitor partially blocked the TGFβ1 increasing VIM and TWIST1 expressions. In conclusion, TGFβ1 stimulates arachidonic acid synthesis and the arachidonic acid has a function to postulate the EMT process together with TGFβ1 during mammary gland involution.
AB - During mammary gland involution, the epithelial mesenchymal transition (EMT) process plays an important role in tissue remodelling and in the termination of milk production. Transforming growth factor β (TGFβ) has been known as a central inducer to EMT and contributor to the mammary gland involution. However, the whole mechanism has accomplished the EMT process in mammary gland is still unclear. Here, we show that arachidonic acid, one of the major products in milk, is new player to control the EMT together with TGFβ during mammary gland involution. Firstly, we observed decrease in CDH1 (epithelial marker gene) expression and increases in VIM and TWIST1 (mesenchymal marker genes), TGFB1, and PLCG2 (arachidonic acid synthesis gene) at involution. In epithelial cells culture experiments, depletion of lactogenic hormones to mimic the involution induced TGFβ1 and PLCG2 expressions. Treatment with arachidonic acid in epithelial cells increased VIM and TWIST1 expressions without decrease of CDH1 expression, while TGFβ1 decreased CDH1 and increased VIM and TWIST1; more importantly, TGFβ1 induced the expression of PLCG2, but arachidonic acid did not induce the expression of TGFB1. Finally, arachidonic acid accelerated the TGFβ1 increasing VIM and TWIST1 expressions, meanwhile arachidonic acid synthase inhibitor partially blocked the TGFβ1 increasing VIM and TWIST1 expressions. In conclusion, TGFβ1 stimulates arachidonic acid synthesis and the arachidonic acid has a function to postulate the EMT process together with TGFβ1 during mammary gland involution.
KW - Arachidonic acid
KW - Epithelial-mesenchymal transition
KW - Involution
KW - Mammary gland
KW - TGFβ1
UR - http://www.scopus.com/inward/record.url?scp=85021216167&partnerID=8YFLogxK
U2 - 10.1262/jrd.2016-157
DO - 10.1262/jrd.2016-157
M3 - 学術論文
C2 - 28381667
AN - SCOPUS:85021216167
SN - 0916-8818
VL - 63
SP - 325
EP - 332
JO - Journal of Reproduction and Development
JF - Journal of Reproduction and Development
IS - 3
ER -