Abstract
In this study, the cracking behavior and microstructural, mechanical and thermal characteristics of tungsten–rhenium (W–Re) binary alloys fabricated by laser powder bed fusion (L-PBF) were investigated. Four bulk specimens were prepared by L-PBF: pure W, W–1%Re, W–3%Re and W–10%Re (percentages indicate the mass percent of Re). High-density bulk specimens (relative density > 98.0%) were obtained for pure W and W–Re alloys under the same laser irradiation conditions. The columnar grains elongated along the building direction were gradually refined as the Re content increased. The most remarkable grain refinement was observed for the W–10%Re alloy. Hardness under a high-temperature environment increased with increasing Re content; the micro-Vickers hardnesses of pure W and W–10%Re at 400 °C were 179 ± 4 HV0.1/30 and 281 ± 5 HV0.1/30, respectively. Observations with a scanning electron microscope revealed that the 10 mass% Re addition resulted in a shorter and narrower crack morphology in comparison with pure W and consequently reduced crack area by 59%. Furthermore, the anisotropy of the thermal diffusivity was mitigated in the high Re content specimens, suggesting that, at high Re content, thermal diffusivity is affected less by cracks than by the effect of Re atoms on heat carrier transfer via isotropic scattering.
Original language | English |
---|---|
Article number | 105651 |
Journal | International Journal of Refractory Metals and Hard Materials |
Volume | 100 |
DOIs | |
State | Published - 2021/11 |
Keywords
- Additive manufacturing
- Crack suppression
- Laser powder bed fusion
- Rhenium alloying
- Tungsten
ASJC Scopus subject areas
- Ceramics and Composites
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry