TY - GEN
T1 - Control of a UAV and a UGV cooperating to manipulate an object
AU - Nguyen, Tam
AU - Garone, Emanuele
N1 - Publisher Copyright:
© 2016 American Automatic Control Council (AACC).
PY - 2016/7/28
Y1 - 2016/7/28
N2 - This paper focuses on the control of a system composed of an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which cooperate to manipulate an object. The two units are subject to actuator saturations and cooperate to move the object to a desired pose, characterized by its position and inclination. The paper proposes a control strategy where the ground vehicle is tasked to deploy the object to a certain position, whereas the aerial vehicle adjusts its inclination. The ground vehicle is governed by a saturated proportional-derivative control law. The aerial vehicle is regulated by means of a cascade control specifically designed for this problem that is able to exploit the mechanical interconnection. The stability of the overall system is proved through Input-to-State Stability and Small Gain theorem arguments. To solve the problem of constraints satisfaction, a nonlinear Reference Governor scheme is implemented. Numerical simulations are provided to demonstrate the effectiveness of the proposed method.
AB - This paper focuses on the control of a system composed of an Unmanned Aerial Vehicle (UAV) and an Unmanned Ground Vehicle (UGV) which cooperate to manipulate an object. The two units are subject to actuator saturations and cooperate to move the object to a desired pose, characterized by its position and inclination. The paper proposes a control strategy where the ground vehicle is tasked to deploy the object to a certain position, whereas the aerial vehicle adjusts its inclination. The ground vehicle is governed by a saturated proportional-derivative control law. The aerial vehicle is regulated by means of a cascade control specifically designed for this problem that is able to exploit the mechanical interconnection. The stability of the overall system is proved through Input-to-State Stability and Small Gain theorem arguments. To solve the problem of constraints satisfaction, a nonlinear Reference Governor scheme is implemented. Numerical simulations are provided to demonstrate the effectiveness of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=84992108014&partnerID=8YFLogxK
U2 - 10.1109/ACC.2016.7525105
DO - 10.1109/ACC.2016.7525105
M3 - 会議への寄与
AN - SCOPUS:84992108014
T3 - Proceedings of the American Control Conference
SP - 1347
EP - 1352
BT - 2016 American Control Conference, ACC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2016 American Control Conference, ACC 2016
Y2 - 6 July 2016 through 8 July 2016
ER -