Bone microstructure as an indicator of digging ability in moles (Talpidae, Eulipotyphla)

Daichi Nakai*, Yasushi Yokohata

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Talpid moles (Talpidae, Eulipotyphla) are mammals highly specialised in burrowing using their forelimbs. Fossoriality has allowed moles to expand their ecological niche by enabling access to subterranean resources and spaces. This specialisation in burrowing has led to adaptations in the forelimb bones of moles for humeral rotation digging, a distinctive strategy unparalleled among other diggers. While bone robustness has been examined in moles through external morphology, the adaptation of bone microstructure to digging strategy remains unclear. Based on two assumptions, (1) the humerus of moles is subjected to a torsional load due to humeral rotation digging, and (2) the magnitude of torsional load correlates with the compactness of the substrate in which the individuals can dig, we hypothesised that humeral rotation digging influences bone microstructure. Comparative analyses of transverse sections from the humeri and femora of three mole species (Mogera imaizumii, Mogera wogura and Urotrichus talpoides; Talpidae) and an outgroup eulipotyphlan (Suncus murinus; Soricidae) revealed that (1) vascular canals distributed in the humeri of moles align more predominantly circumferential along the bone walls, indicating an adaptation to the torsion generated by humeral rotation digging, and (2) the laminarity of vascular canals, particularly in Mogera species compared with Urotrichus, potentially reflects differences in the magnitude of load due to substrate compactness during digging. The aligned vascular canals are distinctive traits not observed in mammals employing other digging strategies. This suggests that vascular canal laminarity can be an indicator of not only humeral rotation digging in fossorial animals, but also the variation of eco-spaces in talpid species.

Original languageEnglish
Pages (from-to)572-582
Number of pages11
JournalJournal of Anatomy
Volume245
Issue number4
DOIs
StatePublished - 2024/10

Keywords

  • Talpidae
  • bone histomorphology
  • fossoriality
  • functional morphology
  • humeral rotation digging

ASJC Scopus subject areas

  • Anatomy
  • Histology
  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Developmental Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Bone microstructure as an indicator of digging ability in moles (Talpidae, Eulipotyphla)'. Together they form a unique fingerprint.

Cite this