TY - JOUR
T1 - Axonal Regeneration Mediated by a Novel Axonal Guidance Pair, Galectin-1 and Secernin-1
AU - Yang, Ximeng
AU - Tohda, Chihiro
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023/3
Y1 - 2023/3
N2 - Galectin-1 (Gal-1), a member of the Galectin family, is expressed in various tissues and responsible for multiple biological activities. Previous studies reported that extracellular Gal-1 participated in axonal growth and repair, and Gal-1 knockout mice exhibited memory impairment. However, no study has demonstrated the direct contribution of intracellular Gal-1 upregulation in neurons to promoting axonal regeneration in the brain and recovering memory function. In the present study, we found that axonal growth is promoted by overexpression of Gal-1 via adeno-associated virus serotype 9 delivery in primary cultured hippocampal neurons. Moreover, Gal-1 was expressed on the membranes of growth cones in hippocampal neurons and interacted with a novel axonal guidance molecule, Secernin-1, which was secreted from prefrontal cortex (PFC) neurons. Gal-1-overexpression-driven axonal growth was enhanced when recombinant (extracellular) Secernin-1 was treated to the axonal site in a neuron device chamber. Direct binding of extracellular Secernin-1 with Gal-1 was detected through immunoprecipitation and immunocytochemistry, demonstrating that Gal-1 possibly works as an axonal guidance receptor for Secernin-1 in hippocampal neurons. In the PFC, the expression of Gal-1 in axonal shafts and terminals of hippocampal neurons was decreased in the 5XFAD mouse model of Alzheimer’s disease (AD). Overexpression of Gal-1 in hippocampal neurons recovered memory deficits and induced axonal regeneration toward the PFC in 5XFAD mice. This study suggests that the enhanced interaction of Secernin-1 and Gal-1 can be harnessed as a therapeutic strategy for long-distance and direction-specific axonal regeneration in AD.
AB - Galectin-1 (Gal-1), a member of the Galectin family, is expressed in various tissues and responsible for multiple biological activities. Previous studies reported that extracellular Gal-1 participated in axonal growth and repair, and Gal-1 knockout mice exhibited memory impairment. However, no study has demonstrated the direct contribution of intracellular Gal-1 upregulation in neurons to promoting axonal regeneration in the brain and recovering memory function. In the present study, we found that axonal growth is promoted by overexpression of Gal-1 via adeno-associated virus serotype 9 delivery in primary cultured hippocampal neurons. Moreover, Gal-1 was expressed on the membranes of growth cones in hippocampal neurons and interacted with a novel axonal guidance molecule, Secernin-1, which was secreted from prefrontal cortex (PFC) neurons. Gal-1-overexpression-driven axonal growth was enhanced when recombinant (extracellular) Secernin-1 was treated to the axonal site in a neuron device chamber. Direct binding of extracellular Secernin-1 with Gal-1 was detected through immunoprecipitation and immunocytochemistry, demonstrating that Gal-1 possibly works as an axonal guidance receptor for Secernin-1 in hippocampal neurons. In the PFC, the expression of Gal-1 in axonal shafts and terminals of hippocampal neurons was decreased in the 5XFAD mouse model of Alzheimer’s disease (AD). Overexpression of Gal-1 in hippocampal neurons recovered memory deficits and induced axonal regeneration toward the PFC in 5XFAD mice. This study suggests that the enhanced interaction of Secernin-1 and Gal-1 can be harnessed as a therapeutic strategy for long-distance and direction-specific axonal regeneration in AD.
KW - Alzheimer’s disease
KW - Axonal regeneration
KW - Galectin-1
KW - Memory recovery
KW - Secernin-1
UR - http://www.scopus.com/inward/record.url?scp=85142761645&partnerID=8YFLogxK
U2 - 10.1007/s12035-022-03125-6
DO - 10.1007/s12035-022-03125-6
M3 - 学術論文
C2 - 36437381
AN - SCOPUS:85142761645
SN - 0893-7648
VL - 60
SP - 1250
EP - 1266
JO - Molecular Neurobiology
JF - Molecular Neurobiology
IS - 3
ER -