Abstract
Tritium (T) retention characteristics in dust collected from the divertor in JET with ITER-like wall (JET-ILW) after the third campaign in 2015-2016 (ILW-3) have been examined in individual dust particles by combining radiography (tritium imaging plate technique) and electron probe micro-analysis. The results are summarized and compared with the data obtained after the first campaign in 2011-2012 (ILW-1). The dominant component in ILW-1 dust was carbon (C) originating from tungsten-coated carbon fibre composite (CFC) tiles in JET-ILW divertor and/or legacy of C dust after the JET operation with carbon wall. Around 85% of the total tritium retention in ILW-1 dust was attributed to the C dust. The retention in tungsten (W) and beryllium (Be) dominated particles was 100 times smaller than the highest T retention in carbon-based particles. After ILW-3 the main component contributing to the T retention was W. The number of small W particles with T increased, in comparison to ILW-1, most probably by the exfoliation and fragmentation of W coatings on CFC tiles though T retention in individual W particles was smaller than in C particles. The detection of only very few Be-dominated dust particles found after ILW-1 and ILW-3 could imply stable Be deposits on the divertor tiles.
Original language | English |
---|---|
Article number | 024008 |
Journal | Physica Scripta T |
Volume | 97 |
Issue number | 2 |
DOIs | |
State | Published - 2022/02 |
Keywords
- ITER-Like Wall
- JET
- divertor
- dust
- imaging plate
- tritium
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Mathematical Physics
- Condensed Matter Physics