An expanded maximum neural network with chaotic dynamics for cellular radio channel assignment problem

Jiahai Wang*, Zheng Tang, Hiroki Tamura, Xinshun Xu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we propose a new parallel algorithm for cellular radio channel assignment problem that can help the expanded maximum neural network escape from local minima by introducing a transient chaotic neurodynamics. The goal of the channel assignment problem, which is an NP-complete problem, is to minimize the total interference between the assigned channels needed to satisfy all of the communication needs. The expanded maximum neural model always guarantees a valid solution and greatly reduces search space without a burden on the parameter-tuning. However, the model has a tendency to converge to local minima easily because it is based on the steepest descent method. By adding a negative self-feedback to expanded maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm then is fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the expanded maximum neural network and the chaotic neurodynamics. Simulations on benchmark problems demonstrate the superior performance of the proposed algorithm over other heuristics and neural network methods.

Original languageEnglish
Pages (from-to)2092-2099
Number of pages8
JournalIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
VolumeE87-A
Issue number8
StatePublished - 2004/08

Keywords

  • Channel assignment problem
  • Expanded maximum neural network
  • NP-complete problem
  • Transient chaos

ASJC Scopus subject areas

  • Signal Processing
  • Computer Graphics and Computer-Aided Design
  • Electrical and Electronic Engineering
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'An expanded maximum neural network with chaotic dynamics for cellular radio channel assignment problem'. Together they form a unique fingerprint.

Cite this