A deep learning-based prediction model for prognosis of cervical spine injury: a Japanese multicenter survey

Sadayuki Ito, Hiroaki Nakashima*, Naoki Segi, Noriaki Yokogawa, Takeshi Sasagawa, Toru Funayama, Fumihiko Eto, Akihiro Yamaji, Kota Watanabe, Satoshi Nori, Kazuki Takeda, Takeo Furuya, Atsushi Yunde, Hideaki Nakajima, Tomohiro Yamada, Tomohiko Hasegawa, Yoshinori Terashima, Ryosuke Hirota, Hidenori Suzuki, Yasuaki ImajoShota Ikegami, Masashi Uehara, Hitoshi Tonomura, Munehiro Sakata, Ko Hashimoto, Yoshito Onoda, Kenichi Kawaguchi, Yohei Haruta, Nobuyuki Suzuki, Kenji Kato, Hiroshi Uei, Hirokatsu Sawada, Kazuo Nakanishi, Kosuke Misaki, Hidetomi Terai, Koji Tamai, Akiyoshi Kuroda, Gen Inoue, Kenichiro Kakutani, Yuji Kakiuchi, Katsuhito Kiyasu, Hiroyuki Tominaga, Hiroto Tokumoto, Yoichi Iizuka, Eiji Takasawa, Koji Akeda, Norihiko Takegami, Haruki Funao, Yasushi Oshima, Takashi Kaito, Daisuke Sakai, Toshitaka Yoshii, Tetsuro Ohba, Bungo Otsuki, Shoji Seki, Masashi Miyazaki, Masayuki Ishihara, Masahiro Oda, Seiji Okada, Shiro Imagama, Satoshi Kato

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Fingerprint

Dive into the research topics of 'A deep learning-based prediction model for prognosis of cervical spine injury: a Japanese multicenter survey'. Together they form a unique fingerprint.

Medicine and Dentistry

Psychology

Pharmacology, Toxicology and Pharmaceutical Science

Neuroscience

Keyphrases