Project Details
Abstract
楕円曲面上の高い種数の曲線は、変形族としてモジュライを持って現れるので、"数え上げ"の意味付けが問題になってくる.これに関して,弦理論双対性の直観に基づいて,GopakumarとVafaは曲線をヤコビアンと共に考えるモジュライ空間を考え,それのコホモロジー群のレフシェッツのSL(2,C)分解が"数え上げ"に意味付け与えるという予想を与えた.斎藤政彦氏(神戸大)と高橋篤史氏(京都大)との共同研究において,高い種数の曲線の"数え上げ"母関数のが一般に準保型形式になることと,それらがある漸化式(正則性アノマリー方程式)を満たすことを見つけ,それに基づいて"数え上げ"母関数を決定する枠組みを構築した.その上で、有理楕円曲面の場合に,Gopakumar-Vafaの予想を肯定的に検証した.
Status | Finished |
---|---|
Effective start/end date | 1997/01/01 → 1998/12/31 |
Funding
- Japan Society for the Promotion of Science: ¥2,400,000.00
Keywords
- Calabi-Yau多様体
- Gromov-Witten不変量
- ミラー対称性
- 弦理論
- カラビ・ヤウ多様体
- 超弦理論
- 超対称性