A STUDY ON GEOMETRICALLY ANALYTIC STRUCTURES ON COMPLEX BOUNDED DOMAINS

  • 東川, 和夫 (Principal Investigator)
  • NOGUCHI, Jyunjirou (Co-Investigator(Kenkyū-buntansha))
  • 古田, 高士 (Co-Investigator(Kenkyū-buntansha))
  • 渡辺, 義之 (Co-Investigator(Kenkyū-buntansha))
  • SHIMIZU, Satoru (Co-Investigator(Kenkyū-buntansha))
  • KODAMA, Akio (Co-Investigator(Kenkyū-buntansha))

Project Details

Abstract

(3)For every integer N at least 5, there estists a plane tiling by a parallel hexagon such that the congruent transformation group is a rotation goup of order N.
StatusFinished
Effective start/end date1998/01/012000/12/31

Funding

  • Japan Society for the Promotion of Science: ¥7,000,000.00

Keywords

  • 多重複素グリーン関数
  • バーグマン計量
  • 等質有号領域
  • うるう年
  • ラテン方陣
  • 魔法陣
  • タイル張り
  • 等質有界領域
  • 不変計量
  • 擬対称領域
  • 正則双断面曲率
  • 連分数展開
  • Pluri complex Green function
  • Bergman metric
  • Homogeneous bounded domain
  • Leap year
  • Latai square
  • Magic square
  • plane tiling