High accuracy finite element method for flow problem with moving boundary and relative topics

  • 大森, 克史 (Principal Investigator)
  • YAMAGUCHI, Norikazu (Co-Investigator(Kenkyū-buntansha))
  • 奧村, 弘 (Co-Investigator(Kenkyū-buntansha))
  • MURAKAWA, Hideki (Co-Investigator(Kenkyū-buntansha))

Project Details

Abstract

Okumura considered the free-interface flow problem using the SLG characteristic finite element method with the Hermite element and the surface tension effect by the CSF method. Murakawa treated a moving boundary problem with triple-junction points. He provided a weak formulation of the problem which implicitly involves the information of the moving boundaries. Moreover, he proposed and analyzed an efficient numerical method for caputuring the moving boundaries. Yamaguchi had by analytic semigroup theory that mind solution of the Cauchy problem of penalized Navier-Stokes equations converges to that of original problem when penalty parameter tends to zero.
StatusFinished
Effective start/end date2009/01/012011/12/31

Funding

  • Japan Society for the Promotion of Science: ¥4,550,000.00

Keywords

  • 自由界面問題
  • 有限要素法
  • フラックス・フリー有限要素法
  • Semi-Lagrange Galerkin特性関数法
  • 表面張力
  • 反応拡散近似
  • 移動境界問題
  • Semi-Lagrange Galerkin特性有限要素法
  • Semi-Lagrange Galerkin法
  • 自由境界問題
  • 応用数学
  • 数値解析
  • 流体力学