Skip to main navigation
Skip to search
Skip to main content
University of Toyama Home
日本語
English
Home
Profiles
Research units
Projects
Research output
Datasets
Prizes
Activities
Courses
Search by expertise, name or affiliation
Development of novel medical strategies in pre-disease by Kampo science and the mathematical science of complex systems
Koizumi, Keiichi
(Principal Investigator)
Oku, Makito
(Co-Investigator(Kenkyū-buntansha))
Presymptomatic Disease, Institute of Natural Medicine
Research Center for Pre-Disease Science
Overview
Research output
(3)
Research output
Research output per year
2019
2019
2020
2022
2022
3
Article
Research output per year
Research output per year
3 results
Type
(ascending)
Publication Year, Title
Title
Type
(descending)
Search results
Article
Dynamical network biomarkers: Theory and applications
Aihara, K., Liu, R.,
Koizumi, K.
, Liu, X. & Chen, L.,
2022/01/15
,
In:
Gene.
808
, 145997.
Research output
:
Contribution to journal
›
Article
›
peer-review
Open Access
Network Biomarker
100%
Critical Transition
25%
Pre-disease State
25%
Traditional Medicine
25%
Ultra-early
25%
48
Scopus citations
Identifying pre-disease signals before metabolic syndrome in mice by dynamical network biomarkers
Koizumi, K.
,
Oku, M.
, Hayashi, S., Inujima, A.,
Shibahara, N.
, Chen, L.,
Igarashi, Y.
,
Tobe, K.
,
Saito, S.
, Kadowaki, M. & Aihara, K.,
2019/12/01
,
In:
Scientific Reports.
9
,
1
, 8767.
Research output
:
Contribution to journal
›
Article
›
peer-review
Open Access
Metabolic Syndrome
100%
Pre-disease State
100%
Network Biomarker
100%
Gene Expression
100%
Microarrays
100%
46
Scopus citations
Suppression of Dynamical Network Biomarker Signals at the Predisease State (Mibyou) before Metabolic Syndrome in Mice by a Traditional Japanese Medicine (Kampo Formula) Bofutsushosan
Koizumi, K.
,
Oku, M.
, Hayashi, S., Inujima, A.,
Shibahara, N.
, Chen, L.,
Igarashi, Y.
,
Tobe, K.
,
Saito, S.
, Kadowaki, M. & Aihara, K.,
2020
,
In:
Evidence-based Complementary and Alternative Medicine.
2020
, 9129134.
Research output
:
Contribution to journal
›
Article
›
peer-review
Open Access
Traditional Japanese Medicine
100%
Kampo Formula
100%
Metabolic Syndrome
100%
Pre-disease State
100%
Network Biomarker
100%
17
Scopus citations