Structures of Banach function spaces that are derived from the theory of martingales

  • 菊池, 万里 (Principal Investigator)
  • 和泉澤, 正隆 (Co-Investigator(Renkei-kenkyūsha))

Project Details

Abstract

As a consequence of this research, we obtained a lot of theorems which show that we can analyze some structures of Banach function spaces by using martingale theory. For example we proved that, when X is a Banach function space, somenecessary and sufficient conditions which ensure that certain kinds of martingaleinequalities are valid in X can be expressed in terms of the rearrangement-invariance of X and the Boyd indices of X. This result shows that there are close connections between the validity of martingale inequalities and the structures of Banach function spaces.
StatusFinished
Effective start/end date2008/01/012012/12/31

Funding

  • Japan Society for the Promotion of Science: ¥3,770,000.00

Keywords

  • マルチンゲール
  • Banach関数空間
  • 再配列不変空間
  • Boyd指数
  • ノルム不等式
  • 再配分不変空間
  • Boyd index
  • 再配置不変空間
  • マルチンゲール変換
  • マルチンゲール不等式
  • 再配分(再配列)不変空間
  • マルチングール